Requirements, Specifications, Procedures and Certifications

David Snyder
NASA Glenn Research Center
for Explorer Post 632: BalloonSat
3 November 2004

Definitions

Requirements

Descriptions of what is needed.

Procedures

Documentation of how to accomplish things to ensure requirements are satisfied. Checklist is a kind of procedure.

Specifications

- Quantify requirements and operating conditions, or
- Descriptions of equipment including operating conditions and measurement capability

Test/Analysis

Confirm Requirements and specifications are met.

Certification

> Take responsibility that tests and analysis are met.

Priorities

How would you rank these? Why?

- Safety
- Recovery
- Successful Measurements

Why Requirements and Specifications?

Safety

- ♦ Air Space FAA Regulations
- Selves and Colleagues
 - High Pressure Gas
 - Equipment Handling
 - ♦ Travel
- - Parachute
 - Warnings

Why Requirements and Specifications?

- Recovery
 - ♦ Prediction
 - analysis
 - - Procedures and checklists
 - ♦ Tracking
 - procedures
 - ♦ Transportation
 - Procedures and checklists

Why Requirements and Specifications?

- Successful Measurements
 - ♦ Reliability
 - ♦ testing
 - ♦ Environmental Conditions
 - analysis
 - ♦ Testing/Analysis
 - ♦ Certification
 - responsibility

Safety Safe Operation in Air Space

CFR 14 part 101

Moored Balloons, Kites, Unmanned Rockets and Unmanned Free Balloons

- No Hazardous Operation (§101.7)
- Don't damage Aircraft
- Exempt Conditions: §101.1 par. (a) 4
 - Payload Under 4 lb.
 - Payload Under 6 lb And density under 3 oz/in2.
 - ♦ Total Payloads under 12 lb.
 - Proper requires impact force of less than 50 lb to break.
- If exempt don't need: (§101.35)
 - Two independent cut down systems
 - We use balloon burst as one method
 - Two independent flight termination methods
 - Radar reflector.

Safety

High Pressure Gas Tanks

- If valve shears off, we will have a hundred pound missile.
- Requirement: High Pressure Tanks must be handled safely.
- Procedure: store gas tanks securely. Do not drop tank.
- ♦ Others?

Road Safety

- Requirement: Driver must pay attention to the road.
- Procedure: Each vehicle in "Chase" must have a navigator, and radio operator in addition to a driver.
- Procedure: Vehicle must be stopped during planning involving the driver.

Others?

Recovery

Train survival

- String testing
- Knots testing
- Boxes -testing
- Parachutes

Radio Tracking

- **♦ Test to temperature and pressure, EMI?**
- Redundant and independent
- ♦ Independent radio bands, 2m (145mHz), 70 cm
- Beeper for ground location

Labels

Return address, contact information

Measurements Test equipment

- individually
- Under environmental conditions
 - Cold temperatures / low pressure
 - ♦ Internal: -15 C (need to verify this temperature?)
 - ♦ Potential Solution : Heater (more weight)?
- Verify Operation

Interoperability

- Test together
- Unobstructed access
- Electromagnetic interference, EMI.
 - Principally from radios.
 - Data may be noisier than w/radios off
 - Solution is more shielding

If it doesn't work, is there any good reason to fly it?

Simulations

Purpose: Determine behavior

- Analytical (often computer models)
- Physical Testing
 - Paproduce important conditions.

NASA Testing

- Vacuum Testing
 - Tank 5, Tank 6 in B301
 - designed for electric propulsion testing
- Solar Simulator
 - ♦ 3 kW Xenon arc lamp
 - Peproduce 1 sun at 1 au over 12" diameter
 - Document solar cell performance
 - Can measure Temperature dependence.
- Extended temperature Chamber (ETC) (8")
 - Low pressure
 - ♦ With Cold Plate (to -200C)
 - For solar simulator, but useful for our cold testing

Simulations (2)

- Solar Simulator
 - ♦ 3 kW Xenon arc lamp
 - Reproduce 1 sun at 1 au over 12" diameter
 - Document solar cell performance
 - ♦ Can measure Temperature dependence.

♦	Computer altitude test
	What is pressure at 25000 ft? mb
	What is pressure in torr?
	(x760/1013)torr
	This is target pressure of test.
	Ctort time :
	Start time:
	How long does the computer run well? min
	How long till it stops?min
	Does it restart?

String Strength Test

Purpose

- Need balloon train to be reliable
- Want to satisfy FAR 101 requirement
- Measure strength of String and Knots.
 - ♦ Work in Pairs
 - String has two relevant properties
 - Breaking strength
 - Elasticity stretches with increasing force like a spring.

String Strength Test

Procedure

- For both 50lb and 100lb string
 - ♦ Cut 36" length
 - ♦ Tie ~24" length between Spring clamps
 - Record "zero" weight of apparatus
 - Doth watch scale, each step on stick to increase force together.
 - Record both observations of breaking [highest] force.
 - Where did string break?
- Repeat with a knot in middle.
- **Options:**
 - Measure string extension at
 - ♦ 0lb, 20lb, 40lb.